martes, 5 de junio de 2007

Tarea "Examen"

Bueno mi experiencia fue que batalle mucho para hacer el correo en yahoo pero al fin pude con ayuda de mis compañeras pero pude hacerlo, luego batalle bastante para contestar las preguntas y se me hizo muy dificil, mi calificaciòn fue de un 34% y aqui esta mi examen.

Complete con la palabra correcta la frase

faraday descubrió que cuando un conductor corta las líneas de flujo magnético, se produce una fem entre los extremos de dicho conductor.

La ley de lenz enuncia que una corriente inducida fluirá en una dirección tal que por medio de su campo magnético se opondrá al movimiento del campo magnético que la produce.

El henrys es la unidad de la inductancia

Capacitor es sinónimo de condensador

miércoles, 23 de mayo de 2007

Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics

"Cuando varía el flujo magnético que atraviesa una bobina, esta reacciona de tal manera que se opone a la causa que produjo la variación"

Es decir, si el flujo aumenta, la bobina lo disminuirá; si disminuye lo aumentará. Para conseguir estos efectos, tendrá que generar corrientes que, a su vez, creen flujo que se oponga a la variación. Se dice que en la bobina ha aparecido una CORRIENTE INDUCIDA, y, por lo tanto, UNA FUERZA ELECTROMOTRIZ INDUCIDA.

Se verá un ejemplo aclaratorio: Supongamos que la bobina, situada a la izquierda en la figura siguiente, tiene un flujo nulo.Por lo que la corriente I será nula también.

Si le acercamos un imán, parte del flujo de éste atravesará la propia bobina, por lo que el flujo de la bobina pasará de ser nulo a tener un valor.

La bonina reaccionará intentando anular este aumento de flujo y

¿ Cómo lo hará ?

Lo hará creando una corriente I en el sentido indicado en la figura, porque de esa manera, esta corriente creará un flujo contrario oponiéndose al aumento impuesto desde el exterior. Una vez transcurrido cierto tiempo, la bobina se ha amoldado a las nuevas condiciones y el flujo que la atraviesa será el que le impone el imán. Al amoldarse dejará de crear la corriente indicada, que pasará de nuevo a ser cero.




Si ahora se aleja el imán, el flujo que estaba ahora atravesando la bobina disminuirá, por lo que la bobina reacionará creando de nuevo una corriente está vez de signo contrario al anterior, para producir un flujo que se oponga a la disminución.

Bibliografia:
http://www.ifent.org/lecciones/cap07/cap07-08.asp


martes, 1 de mayo de 2007

Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics





Refracción


Refracción (ou refración) é a mudanza de velocidade dunha onda debido a unha mudanza de medio de propagación. Normalmente ocorre o desvío da onda incidente, mais, tamén, ocorre refración sen desvío. Acontece cando as ondas pasan dun medio cun dado índice de refracción para un medio onde este parámetro difire. Na fronteira entre os dous medios, a onda muda de dirección, aumentando ou diminuíndo o seu lonxitude de onda, mantendo, no entanto, a súa frecuencia constante. Por exemplo, un raio de luz será refractado ao pasar por vidro, lentes ou pola auga. A comprensión deste concepto permitiu, por exemplo, a invención do telescopio de refracción.


O Índice de refracción é unha relación entre a velocidade da luz nun determinado medio e a velocidade da luz no vacuo (c). En medios con índices de refración máis baixos (próximos a 1) a luz ten velocidade maior (ou sexa, próximo a velocidade da luz no vacuo). A relación pode ser descrita pola fórmula:




Onde: c é a velocidade da luz no vacuo (c = 3 x 108 m/s); v é a velocidade da luz no medio;



Bibliografía:
http://gl.wikipedia.org/wiki/Refracci%C3%B3n


Refracción de la luz



Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de velocidad y un cambio de dirección si no incide perpendicularmente en la superficie. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell. Esta ley, así como la refracción en medios no homogéneos, son consecuencia del principio de Fermat, que indica que la luz se propaga entre dos puntos siguiendo la trayectoria de recorrido óptico de menor tiempo.
Por otro lado, la velocidad de la penetración de la luz en un medio distinto del vacío está en relación con la longitud de la onda y, cuando un haz de luz blanca pasa de un medio a otro, cada color sufre una ligera desviación. Este fenómeno es conocido como
dispersión de la luz

Refracción del sonido

Es la desviación que sufren las ondas cuando el sonido pasa de un medio a otro diferente. A diferencia de lo que ocurre en la reflexión, en la refracción, el ángulo de refracción ya no es igual al de incidencia.

Refracción de ondas de radio


El fenómeno de la refracción es un fenómeno que se observa en todo tipo de ondas. En el caso de las ondas de radio, la refracción es especialmente importante en la ionosfera, en la que se producen una serie continua de refracciones que permiten a las ondas de radio viajar de un punto del planeta a otr

Refracción de ondas sísmicas.


Otro ejemplo de refracción no ligado a ondas electromagnéticas es el de las ondas sísmicas. La velocidad de propagación de las ondas sísmicas depende de la densidad del medio de propagación y, por lo tanto, de la profundidad y de la composición de la región atravesada por las ondas. Se producen fenómenos de refracción en los siguientes casos:
Refracción entre la transición entre dos capas geológicas, especialmente entre el
manto y el núcleo.
En el manto, por pequeñas desviaciones de la densidad entre capas ascendentes menos densas y descendentes, más densas.

Ley de refracción (Ley de Snell)


La relación entre el seno del ángulo de incidencia y el seno del ángulo de refracción es igual a la razón entre la velocidad de la onda en el primer medio y la velocidad de la onda en el segundo medio, o bien puede entenderse como el producto del índice de refracción del primer medio por el seno del ángulo de incidencia es igual al producto del índice de refracción del segundo medio por el seno del ángulo de refracción. Esto es;
n1senθ1 = n2senθ2


donde:

n1 = índice de refracción del primer medio
θ1 = Angulo de Incidencia
n2 = índice de refracción del segundo medi
θ2 = Angulo de Refracción

Bibliografía:
http://es.wikipedia.org/wiki/Refracci%C3%B3n








viernes, 20 de abril de 2007

Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics
TEORIAS DEL ORIGEN DE LA LUZ
Los antiguos filósofos ya conocían algunos hechos sobre la propagación de la luz. Así se atribuye a Euclides el descubrimiento de las leyes de la reflexión de la luz (300 ane) Es a mediados del XVII cuando aparecen casi conjuntamente dos teorías acerca de la naturaleza de la luz. Teoría CORPUSCULAR (1666) y teoría ONDULATORIA (1678)
TEORIA CORPUSCULAR
(NEWTON)
Supone que la luz está compuesta por una serie de corpúsculos o partículas emitidos por los manantiales luminosos, los cuales se propagan en línea recta y que pueden atravesar medios transparentes, y pueden ser reflejados por materias opacas. Esta teoría explica: La propagación rectilínea de la luz, la refracción y reflexión. Esta teoría no explica: Anillos de Newton (Irisaciones en las láminas delgadas de los vidrios) Este fenómeno lo explica la teoría ondulatoria y lo veremos más adelante. Tampoco explica los fenómenos de interferencia y difracción.

TEORIA ONDULATORIA
(HUYGENS)
Esta teoría explica las leyes de la reflexión y la refracción , define la luz como un movimientoondulatorio del mismo tipo que el sonido. Como las ondas se trasmiten en el vacío, supone que las ondas luminosas necesitan para propagarse un medio ideal, el ETER, presente tanto en el vacío como en los cuerpos materiales. Esta teoría tiene una dificultad fundamental que es precisamente la hipótesis del éter. Tenemos que equiparar las vibraciones luminosas a las vibraciones elásticas transversales de los sólidos, y no transmitiendo por tanto vibraciones longitudinales. Existe, pues, una contradicción en la naturaleza del éter, ya que por un lado debe ser un sólido incompresible y por otro no debe oponer resistencia al movimiento de los cuerpos. (Nota: Las ondas transversales solo se propagan en medios sólidos) Esta teoría no fue aceptada debido al gran prestigio de Newton. Tuvo que pasar más de un siglo para que se tomara nuevamente en consideración la "Teoría Ondulatoria". Los experimentos de Young (1801) sobre fenómenos de interferencias luminosas, y los de Fresnel sobre difracción fueron decisivos para que se tomaran en consideración los estudios de Huygens y para la explicación de la teoría ondulatoria. Fue también Fresnel (1815) quien explicó el fenómeno de la polarización transformando el movimiento ondulatorio longitudinal, supuesto por Huygens, en transversal. Existe, sin embargo, una objeción a esta teoría, puesto que en el éter no se puede propagar la luz por medio de ondas transversales, ya que éstas solo se propagan en medios sólidos.

TEORIA ELECTROMAGNETICA
(MAXWELL 1865)
Descubre que la perturbación del campo electromagnético puede propagarse en el espacio a una velocidad que coincide con la de la luz en el vacío, equiparando por tanto las ondas electromagnéticas con las ondas luminosas. Veinte años después Hertz comprueba que las ondas hertzianas de origen electromagnético tienen las mismas propiedades que las ondas luminosas, estableciendo definitivamente la identidad de ambos fenómenos.
Objeciones a ésta teoría:
No se da explicación a:
Fenómenos por absorción o emisión.
Fenómenos fotoeléctricos.
Emisión de luz por cuerpos incandescentes.
Y por lo tanto es necesario volver a la teoría corpuscular, como hizo Planck en 1900.

TEORIA DE LOS CUANTOS
(PLANCK 1900)
Esta teoría establece que los intercambios de energía entre la materia y la luz, solo son posibles por cantidades finitas. (cuantos) átomos de luz, que posteriormente se denominarán fotones. Esta teoría tropieza con el inconveniente de no poder explicar los fenómenos de tipo ondulatorio: Interferencias, difracción, .... Nos encontramos nuevamente con dos hipótesis contradictorias, la teoría electromagnética y la de los cuantos.

MECANICA ONDULATORIA
(DE BROGLIE 1924)
Auna la teoría electromagnética y la de los cuantos, herederas de la ondulatoria y corpuscular respectivamente, evidenciando la doble naturaleza de la luz. Esta teoría establece así la naturaleza corpuscular de la luz en su interacción con la materia (procesos de emisión y absorción)y la naturaleza electromagnética en su propagación.


Bibliografia:




martes, 10 de abril de 2007

Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics







La ley de cero de la termodinamica.
El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, entre otras) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas termodinámicas del sistema.
A este principio se le llama del
equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición 0.
Los dos enunciados principales que define la segunda ley de la termodinamica.
Clausius: La enuncio como sigue: No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación).
Kelvin (con Planck) enuncio la segunda ley con palabras equivalentes a las siguientes: Es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. Este enunciado elimina nuestras ambiciones de la máquina térmica, ya que implica que no podemos producir trabajo mecánico sacando calor de un solo depósito, sin devolver ninguna cantidad de calor a un depósito que esté a una temperatura más baja.
Comentar que se entiende por muerte termica del Universo.
La entropía puede interpretarse como una medida de la distribución aleatoria de un sistema. Se dice que un sistema altamente distribuido al azar tiene una alta entropía. Puesto que un sistema en una condición improbable tendrá una tendencia natural a reorganizarse a una condición más probable (similar a una distribución al azar), esta reorganización resultará en un aumento de la entropía. La entropía alcanzará un máximo cuando el sistema se acerque al equilibrio, alcanzándose la configuración de mayor probabilidad.
Explicar que es un procesao adiabatico y uno no adiabatico.
Proceso adiabático: a aquel en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico.
Proceso no adiabatico: hace referencia a elementos que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático.
Describir el concepto de energia interna de un sistema.
La energía interna de un sistema, es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energías de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales. Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna.
3 Fuentes de energia termica y cuales son las ventajas que presentan el uso de cada
una de ellas.

Energía Hidraúlica
Es la energía asociada a los saltos de agua rios y embalses
La forma de energía que posee el agua de los embalses es energía potencial gravitatoria, que podemos aprovechar conduciéndola y haciéndola caer por efecto de la gravedad.
Se puede transformar en energía mecánica en los molinos de agua y en energía eléctrica en las centrales hidroeléctricas.
Ventajas:
-Es una energia limpia
-No contaminante
-Su transformacion es directa
-Es renovable

Energía Eólica
Es la energía asociada al viento.
La forma de energía que posee es la energía cinética del viento, que podemos aprovechar en los molinos, en la navegación a vela,...
Se puede transformar en energía mecánica en los molibos de vientos o barcos de vela, y en energía eléctrica en los aerogeneradores.

VENTAJAS
-Limpia
-Sencillez de los principios aplicados
-Conversión directa
-Empieza a ser competitiva

Energía Solar
Es la energía asociada a la radiación solar.
La forma de energía que posee el Sol es energía nuclear interna que se transforma en la energía que emite mediante procesos de fusión. El Sol emite sin cesar lo que se llama energía radiante o, simplemente, radiación.
Se transforma en lo que habitualmente se denomina energía térmica y en energía eléctrica. Se puede realizar directamente (fotovoltaica) o indirectamente.

VENTAJAS
-Limpia
-Sencillez de los principios aplicados
-Conversión directa
-Empieza a ser competitiva
Bibliografia: